

Fermi

Gamma-ray Space Telescope

The first 100 LAT Gamma-ray Bursts:

a new detection algorithm and pass 8

G.Vianello

on behalf of the Fermi/LAT collaboration

The mystery of the missing GRBs:

Optimistic predictions? New GRB physics?

Pass 8 is a major review of the event analysis

Pass 8: much improved science performance

See P. Bruel talk in the Analysis splinter

GRBs & Pass 8: lower flux threshold

(simulated 100 s GRBs on true background, Transient classes)

GRBs & Pass 8: more detections

Which fraction of GRBs with a given flux are we able to detect at a given off-axis angle?

(simulated GRBs on true background, Transient classes)

GRBs & Pass 8: better sky coverage

What is the solid angle within which we have a 50 % detection efficiency for a GRB with a given flux?

(simulated GRBs on true background, Transient classes)

Another recent development: new GRB detection algorithm

(GCN circulars, no Pass 8 here!)

Put the two together: → 50% increase in detections

New algorithm + Pass 8

86 detections* (Pass 8 dataset, from 08/08 to 04/14)

+ > 6 detections (predictions, based on Pass 7 analysis between April and today)

+ > 15 LAT Low-Energy (LLE) detections

(counting analysis between ~20 MeV and 100 MeV)

> 100 LAT detected GRBs!

Now exceeding expectations

(Standard likelihood detections, no LLE)

(1st GRB catalog, Ackerman et al. 2013)

What's new in the algorithm?

Lesson 1, from 1st GRB catalog: LAT signal duration >> prompt emission

(First LAT GRB Catalog, Ackermann et al. 2013)

Lesson 1 learned: 10 time scales

This is the number of bursts above the TS threshold for

GRB may enter the field of view at any time, even if it starts outside of it!

Lesson 2, from the GBM team: systematic error in GBM localizations

Lesson 2 learned: 30° x 30° finding map (TS map)

NOTE: now the GBM team releases localization contours which take into account systematic errors

The algorithm

More sensitive: more mid- and low-flux GRBs

(this work)

Pass8 newDetectionAlgorithm

First 100 GRBs
missing GRBs mystery
More GCNs
change Predictions For VHE